Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yang Qu,^{a,b} Zhong-Lu You,^b Zhao-Di Liu,^{a,b} Hai-Liang Zhu^a* and Min-Yu Tan^b

^aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.057 wR factor = 0.168 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

A mononuclear copper(II) compound derived from *N*-(2-hydroxyethyl)ethylenediamine

The asymmetric unit of the title compound bis[N-(2-hydroxyethyl)ethylenediamine- $\kappa^3 N$, N', O]copper(II) bis(4-fluorobenzoate), [Cu(C₄H₁₂N₂O)₂](C₇H₄FO₂)₂, contains one-half of a [Cu(C₄H₁₂N₂O)₂]²⁺ complex cation (the other half is inversion-related) and a 4-fluorobenzoate anion. The Cu^{II} atom has a distorted octahedral coordination geometry and is surrounded by four N atoms and two O atoms from the two inversion-related N-(2-hydroxyethyl)ethylenediamine ligands. In the crystal structure, the molecules are held together by intermolecular O-H···O and N-H···O hydrogen bonds, leading to the formation of a three-dimensional network.

Comment

Metal–ethanolamine complexes are among the most investigated compounds in coordination chemistry. As an extension of the work, we report here the crystal structure of the title compound, (I), a Cu^{II} complex incorporating the ligand N-(2hydroxyethyl)ethylenediamine.

The asymmetric unit of (I) contains one-half of a [Cu(C₄H₁₂N₂O)₂]²⁺ complex cation and an uncoordinated 4fluorobenzoate anion (Fig. 1). The other half of the cation is generated by a crystallographic inversion centre. The Cu^{II} atom, which lies on the inversion centre, has a slightly distorted octahedral geometry and is coordinated by four N atoms and two O atoms from two N-(2-hydroxyethyl)ethylenediamine ligands. The two O atoms coordinate to the Cu^{II} atom in trans positions, while the four N atoms occupy the equatorial positions. The three *trans* angles at the Cu^{II} atom are 180° by symmetry (Table 1) and the other angles subtended at the Cu^{II} atom are close to 90°, varying from 78.22 (15) to 101.78 (15)°, indicating a slightly distorted octahedral geometry. The average Cu-N bond length [2.024 (4) Å] is comparable to that observed in a similar compound [2.045 (8) Å; Vinogradova et al., 2003].

In the 4-fluorobenzoate anion, the carboxylate group is twisted away from the plane of the benzene ring. The dihedral angle between the planes of the benzene ring and carboxylate group is $18.0 (7)^{\circ}$.

In the crystal structure, all of the O atoms and N atoms contribute to the formation of hydrogen bonds, leading to the formation of a three-dimensional network (Fig. 2 and Table 2).

Received 13 July 2004 Accepted 23 July 2004 Online 31 July 2004

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Experimental

All reagents and solvents were used as obtained without further purification. Cupric 4-fluorobenzoate (0.5 mmol, 170.1 mg) and N-(2hydroxyethyl)ethylenediamine (1.0 mmol, 102.2 mg) were dissolved in ethanol (50 ml). The mixture was stirred for 1 h to give a clear blue solution. After keeping the solution in air for two weeks, large blue block-shaped crystals had formed at the bottom of the vessel. The crystals were isolated, washed three times with ethanol and dried in a vacuum desiccator using P₄O₁₀ (yield 45.7%). Analysis found: C 47.7, H 6.1, N 10.3%; calculated for C₂₂H₃₂CuF₂N₄O₆: C 48.0, H 5.9, N 10.2%.

Crystal data

$[Cu(C_4H_{12}N_2O)_2](C_7H_4FO_2)_2$ M _r = 550.06	Z = 1 $D_x = 1.538 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.094 (2) Å	Cell parameters from 1012
b = 7.353(2) Å	reflections
c = 12.139(2) Å	$\theta = 2.5 - 19.7^{\circ}$
$\alpha = 102.68 \ (3)^{\circ}$	$\mu = 0.98 \text{ mm}^{-1}$
$\beta = 100.27 (3)^{\circ}$	T = 293 (2) K
$\gamma = 99.53 (3)^{\circ}$	Block, blue
$V = 593.9(2) \text{ Å}^3$	$0.32 \times 0.22 \times 0.18 \text{ mm}$
Data collection	
Bruker CCD area-detector	1971 independent reflection
diffractometer	1470 reflections with $I > 2c$
ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$

 $T_{\min} = 0.744, T_{\max} = 0.843$ 3094 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.168$ S = 1.071971 reflections 163 parameters

ons $2\sigma(I)$ $k = -7 \rightarrow 8$ $l = -14 \rightarrow 12$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0946P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.88 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -0.59 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N2 Cu1-N1	2.004 (4) 2.044 (4)	Cu1-O1	2.443 (4)
N2 ⁱ -Cu1-N2 N2-Cu1-N1 ⁱ N2-Cu1-N1	180 94.78 (17) 85.22 (17)	N1-Cu1-O1 ⁱ N2-Cu1-O1 N1-Cu1-O1	101.78 (15) 89.68 (15) 78.22 (15)
N1 ⁱ -Cu1-N1 N2-Cu1-O1 ⁱ	180 90.32 (15)	01 ⁱ -Cu1-O1	180.00 (16)

Symmetry code: (i) -x, -y, -z.

Figure 2

The crystal packing of (I), viewed along the a axis. Hydrogen bonds are indicated by dashed lines.

Table 2

Hydrogen-bonding geometry (A,	~)
-------------------------------	---	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$01 - H1B \cdots O3^{ii}$ $N2 - H2B \cdots O2^{iii}$ $N2 - H2A \cdots O2^{iv}$ $N1 - H1A \cdots O2^{v}$	0.81 (8) 0.90 0.90 0.90	1.81 (8) 2.16 2.20 2.22	2.606 (6) 3.025 (5) 3.008 (6) 3.013 (6)	170 (9) 161 149 147

Symmetry codes: (ii) x, y, z - 1; (iii) -x, -y, 1 - z; (iv) x - 1, y, z - 1; (v) 1 - x, -y, 1 - z.

Atom H1B, attached to O1, was located in a difference map and its positional parameters were refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N-H distances of 0.90 Å and C-H distances in the range 0.96–0.97 Å. The U_{iso} values for atoms H11A, H11B, H2A and H2B were set equal to $1.2U_{eq}(C,N)$ and for the remaining H atoms the values were fixed at 0.08 $Å^2$. As a result of the large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Vinogradova, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2003). Acta Cryst. E59, m148-m151.